Cart (Loading....) | Create Account
Close category search window
 

Nonlinear Knowledge-Based Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mangasarian, O.L. ; Dept. of Comput. Sci., Wisconsin Univ., Madison, WI ; Wild, E.W.

In this brief, prior knowledge over general nonlinear sets is incorporated into nonlinear kernel classification problems as linear constraints in a linear program. These linear constraints are imposed at arbitrary points, not necessarily where the prior knowledge is given. The key tool in this incorporation is a theorem of the alternative for convex functions that converts nonlinear prior knowledge implications into linear inequalities without the need to kernelize these implications. Effectiveness of the proposed formulation is demonstrated on publicly available classification data sets, including a cancer prognosis data set. Nonlinear kernel classifiers for these data sets exhibit marked improvements upon the introduction of nonlinear prior knowledge compared to nonlinear kernel classifiers that do not utilize such knowledge.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 10 )

Date of Publication:

Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.