Cart (Loading....) | Create Account
Close category search window
 

Visual Attention on the Sphere

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bogdanova, I. ; Inst. of Microtechnol., Univ. of Neuchatel, Neuchatel ; Bur, Alexandre ; Hugli, H.

Human visual system makes an extensive use of visual attention in order to select the most relevant information and speed-up the vision process. Inspired by visual attention, several computer models have been developed and many computer vision applications rely today on such models. However, the actual algorithms are not suitable to omnidirectional images, which contain a significant amount of geometrical distorsion. In this paper, we present a novel computational approach that performs in spherical geometry and thus is suitable for omnidirectional images. Following one of the actual models of visual attention, the spherical saliency map is obtained by fusing together intensity, chromatic, and orientation spherical cue conspicuity maps that are themselves obtained through multiscale analysis on the sphere. Finally, the consecutive maxima in the spherical saliency map represent the spots of attention on the sphere. In the experimental part, the proposed method is then compared to the standard one using a synthetic image. Also, we provide examples of spots detection in real omnidirectional scenes which show its advantages. Finally, an experiment illustrates the homogeneity of the detected visual attention in omnidirectional images.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 11 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.