By Topic

Maximum a Posteriori Strategy for the Simultaneous Motion and Material Property Estimation of the Heart

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huafeng Liu ; Key Lab. of Modern Opt. Instrum., Zhejiang Univ., Hangzhou ; Pengcheng Shi

In addition to its technical merits as a challenging nonrigid motion and structural integrity analysis problem, quantitative estimation of cardiac regional functions and material characteristics has significant physiological and clinical value. We developed a stochastic finite-element framework for the simultaneous recovery of myocardial motion and material parameters from medical image sequences with an extended Kalman filter approach, and we have shown that this simultaneous estimation strategy achieves more accurate and robust results than separated motion and material estimation efforts. In this paper, we present a new computational strategy for the framework based upon the maximum a posteriori estimation principles, realized through the extended Kalman smoother, that produces a sequence of kinematics state and material parameter estimation of the entire myocardium, including the endocardial, epicardial, and midwall tissues. The system dynamics equations of the heart are constructed using a biomechanical model with stochastic parameters, and the tissue material and deformation parameters are jointly estimated from the periodic imaging data. Noise-corrupted synthetic image sequences with known kinematics and material parameters are used to assess the accuracy and robustness of the framework. Experiments with canine magnetic resonance tagging and phase-contrast image sequences have been conducted with very promising results, as validated through comparison to the histological staining of postmortem myocardium.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 2 )