By Topic

A Grid and Density-Based Clustering Algorithm for Processing Data Stream

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen Jia ; State Key Lab. of Software Eng., Wuhan Univ., Wuhan ; ChengYu Tan ; Ai Yong

This paper proposes DD-Stream, a framework for density-based clustering stream data. The algorithm adopts a density decaying technique to capture the evolving data stream and extracts the boundary point of grid by the DCQ-means algorithm. Our method resolving the problem of evolving automatic clustering of real-time data streams, cannot only find arbitrary shaped clusters with noise, but also avoid the clustering quality problems caused by discarding the boundary point of grid, our algorithm has better scalability in processing large-scale and high dimensional stream data as well.

Published in:

Genetic and Evolutionary Computing, 2008. WGEC '08. Second International Conference on

Date of Conference:

25-26 Sept. 2008