By Topic

Study on Improved Fast Immunized Genetic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wei Gao ; Wuhan Polytech. Univ., Wuhan

As an effective global optimization method, genetic algorithm has been used in real practice very widely. When it is used in real practice, its slow convergence and poor stability have become the main problems. In order to overcome these problems, from the creation of the initial population, immune selection operation, improved genetic operators, et al, an improved fast immunized genetic algorithm is proposed. Through the simulation experiments of some hard-optimization functions, the proposed algorithm shows its faster convergence and better stability than a lot of existing algorithms'.

Published in:

Genetic and Evolutionary Computing, 2008. WGEC '08. Second International Conference on

Date of Conference:

25-26 Sept. 2008