By Topic

A Hybrid Genetic Algorithm for Flexible Task Collaborative Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liyi Zhu ; Dept. of Mech. Eng., Huaian Coll. of Inf. Technol., Huaian ; Jinghua Wu ; Haijun Zhang ; Shijian He

Flexible job scheduling is considered a NP-hard problem (FJS). A hybrid algorithm based on Genetic Algorithm (GA) and Simulated Annealing (SA) is proposed, which is used to schedule the tasks. A two dimensional matrix encoding is adopted, row operator and column operator are advanced accordingly, column crossover operator and column mutation are chosen by considering the Constraints. Elitist selection strategy is employed for accelerating the colony convergence. Capabilities and other factors which would influence the design results are considered when creating individual. Time scheduling and optimization are implemented in decoding phase. Finally, a simulation experiment is carried out by using the proposed algorithm, and comparison with the other algorithm is implemented, it is showed that the convergent velocity is fast and the search ability is better.

Published in:

Genetic and Evolutionary Computing, 2008. WGEC '08. Second International Conference on

Date of Conference:

25-26 Sept. 2008