By Topic

Subject Recognition Based on Ground Reaction Force Measurements of Gait Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moustakidis, S.P. ; Dept. of Electr. & Comput. Eng., Aristotle Univ. of Thessaloniki, Thessaloniki ; Theocharis, J.B. ; Giakas, G.

An effective subject recognition approach is designed in this paper, using ground reaction force (GRF) measurements of human gait. The method is a three-stage procedure: 1) The original GRF data are translated through wavelet packet (WP) transform in the time-frequency domain. Using a fuzzy-set-based criterion, we determine an optimal WP decomposition, involving feature subspaces with distinguishing gait characteristics. 2) A feature extraction scheme is employed next for wavelet feature ranking, according to discrimination power. 3) The classification task is accomplished by means of a kernel-based support vector machine. The design parameters of the classifier are tuned through a genetic algorithm to improve recognition rates. The method is evaluated on a database comprising GRF records obtained from 40 subjects. To account for the natural variability of human gait, the experimental setup is designed, allowing different walking speeds and loading conditions. Simulation results demonstrate that high recognition rates can be achieved with moderate number of features and for different training/testing settings. Finally, the performance of our approach is favorably compared with the one obtained using other traditional classification algorithms.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 6 )