By Topic

Gate Current Noise in Ultrathin Oxide MOSFETs and Its Impact on the Performance of Analog Front-End Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Manghisoni, M. ; Dipt. di Ing. Ind., Univ. di Bergamo, Dalmine

In future charged particle tracking systems, readout integrated circuits will be based on CMOS processes with minimum feature size in the 100 nm range. In nanoscale technologies, the reduction of the gate oxide thickness may lead to a non-negligible gate current due to direct tunneling phenomena. This leakage current, which is caused by discrete charges randomly crossing a potential barrier, yields an increase of the static power consumption for the digital section of the readout circuits and might degrade the noise performances of the analog front-end. As a consequence, in these advanced CMOS processes, an accurate characterization of the gate current noise is necessary in order to establish design criteria for detector analog front-end applications. This work presents the results of static and noise characterization of the gate-leakage current of NMOS devices belonging to a 90 nm commercial process. Data extracted from the measurements have been used to validate an analytical model for the gate current noise, which provides a useful tool for evaluating the impact of this noise source on the resolution limits achievable by low-noise charge amplifiers.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:55 ,  Issue: 4 )