Cart (Loading....) | Create Account
Close category search window
 

Operation and Control Simulation of a Modular High Temperature Gas Cooled Reactor Nuclear Power Plant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haipeng Li ; Inst. of Nucl. & New Energy Technol., Tsinghua Univ., Beijing ; Xiaojin Huang ; Liangju Zhang

Issues in the operation and control of the multi-modular nuclear power plant are complicated. The high temperature gas cooled reactor pebble-bed module (HTR-PM) plant with two-module will be built as a demonstration plant in China. To investigate the operation and control characteristics of the plant, a simplified dynamic model is developed and mathematically formulated based upon the fundamental conversation of mass, energy and momentum. The model is implemented in a personal computer to simulate the power increase process of the HTR-PM operation. The open loop operation with no controller is first simulated and the results show that the essential parameter steam temperature varies drastically with time, which is not allowable in the normal operation. According to the preliminary control strategy of the HTR-PM, a simple steam temperature controller is proposed. The controller is of Proportional-type with a time lag. The closed loop operation with a steam temperature controller is then implemented and the simulation results show that the steam temperature and also other parameters are all well controlled in the allowable range.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:55 ,  Issue: 4 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.