By Topic

Power System Observability Analysis Based on Gram Matrix and Minimum Norm Solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
de Almeida, M.C. ; Electr. Energy Syst. Dept., DSEE-FEEC-UNICAMP, Campinas ; Asada, E.N. ; Garcia, A.V.

This paper presents a numerical method for observability analysis and restoration in power system state estimation based on Gram matrix factorization. A method to identify observable islands based on minimum norm solutions is also presented. The method has the advantage of being easy to implement because all information used for the new formulation can be extracted or adapted from operations that are present in conventional state estimation. The observability analysis and restoration are performed in a single step in which measurements and pseudo-measurements are processed. If the system is nonobservable, minimum norm solutions obtained with nonredundant measurements are used to identify observable islands and, in the sequel, with the results of Gram matrix factorization, a set of nonredundant injection measurements that restore the global observability of the system is obtained. This approach is an alternative to the classical observability analysis and results in methods that are robust and suitable to be used in real-time applications. Numerical examples to show the performance of the methods are presented.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 4 )