By Topic

Feature-based calibration of distributed smart stereo camera networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aaron Mavrinac ; University of Windsor, Department of Electrical and Computer Engineering, 401 Sunset Ave., Ontario, Canada N9B 3P4 ; Xiang Chen ; Kemal Tepe

A distributed smart camera network is a collective of vision-capable devices with enough processing power to execute algorithms for collaborative vision tasks. A true 3D sensing network applies to a broad range of applications, and local stereo vision capabilities at each node offer the potential for a particularly robust implementation. A novel spatial calibration method for such a network is presented, which obtains pose estimates suitable for collaborative 3D vision in a distributed fashion using two stages of registration on robust 3D features. The method is initially described in a geometrical sense, then presented in a practical implementation using existing vision and registration algorithms. The method is designed independently of networking details, making only a few basic assumptions about the underlying networkpsilas capabilities. Experiments using both software simulations and physical devices are designed and executed to demonstrate performance.

Published in:

Distributed Smart Cameras, 2008. ICDSC 2008. Second ACM/IEEE International Conference on

Date of Conference:

7-11 Sept. 2008