By Topic

Consideration for input current-ripple of pulse-link DC-AC converter for fuel cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This paper mentions the static characteristics of pulse-link DC-AC converter for fuel cells, and considers the input current-ripple reduction method. Fuel cells have weakness about current-ripple because the chemical reaction time is much slower than commercial frequency. Therefore, the input current-ripple reduction is essential factor in the DC-AC converter for fuel cells applications. Input current-ripple from fuel cells gives damage the fuel consumption and life time. The conventional DC-AC converter has large smoothing capacitor between boost converter stage and PWM converter stage, in order to reduce input current-ripple. That capacitor prevents from reduction the size of unit. Authors have proposed a novel topology called as pulse-link DC-AC converter. The pulse-link DC-AC converter topology is no need to insert large capacitor. Furthermore, the series-connected LC circuit between two stages connected in parallel works as ripple canceling. This paper shows the mechanism of current-ripple reduction.

Published in:

Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th

Date of Conference:

1-3 Sept. 2008