By Topic

Large ray packets for real-time Whitted ray tracing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Overbeck, R. ; Columbia Univ., New York, NY ; Ramamoorthi, R. ; Mark, W.R.

In this paper, we explore large ray packet algorithms for acceleration structure traversal and frustum culling in the context of Whitted ray tracing, and examine how these methods respond to varying ray packet size, scene complexity, and ray recursion complexity. We offer a new algorithm for acceleration structure traversal which is robust to degrading coherence and a new method for generating frustum bounds around reflection and refraction ray packets. We compare, adjust, and finally compose the most effective algorithms into a real-time Whitted ray tracer. With the aid of multi-core CPU technology, our system renders complex scenes with reflections, refractions, and/or point-light shadows anywhere from 4-20 FPS.

Published in:

Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on

Date of Conference:

9-10 Aug. 2008