By Topic

Subcellular localisation of proteins in fluorescent microscope images using a random forest

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kouzani, A.Z. ; Sch. of Eng. & IT, Deakin Univ., Geelong, VIC

This paper presents a system that employs random forests to formulate a method for subcellular localisation of proteins. A random forest is an ensemble learner that grows classification trees. Each tree produces a classification decision, and an integrated output is calculated. The system classifies the protein-localisation patterns within fluorescent microscope images. 2D images of HeLa cells that include all major classes of subcellular structures, and the associated feature set are used. The performance of the developed system is compared against that of the support vector machine and decision tree approaches. Three experiments are performed to study the influence of the training and test set size on the performance of the examined methods. The calculated classification errors and execution times are presented and discussed. The lowest classification error (2.9%) has been produced by the developed system.

Published in:

Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on

Date of Conference:

1-8 June 2008