Cart (Loading....) | Create Account
Close category search window

Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kozma, R. ; Comput. Neurodynamic Lab., Univ. of Memphis, Memphis, TN ; Perlovsky, L. ; Ankishetty, J.S.

Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data.

Published in:

Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on

Date of Conference:

1-8 June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.