Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Parallel self-organizing maps with application in clustering distributed data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gorgonio, F.L. ; Electr. Eng. & Comput. Sci. Postgrad. Program, Fed. Univ. of Rio Grande do Norte, Natal ; Costa, J.

Clustering is the process of discovering groups within multidimensional data, based on similarities, with a minimal, if any, knowledge of their structure. Distributed data clustering is a recent approach to deal with geographically distributed databases, since traditional clustering methods require centering all databases in a single dataset. Moreover, current privacy requirements in distributed databases demand algorithms with the ability to process clustering securely. Among the unsupervised neural network models, the self-organizing map (SOM) plays a major role. SOM features include information compression while trying to preserve the topological and metric relationship of the primary data space. This paper presents a strategy for efficient cluster analysis in geographically distributed databases using SOM networks. Local datasets relative to database vertical partitions are applied to distinct maps in order to obtain partial views of the existing clusters. Units of each local map are chosen to represent original data and are sent to a central site, which performs a fusion of the partial results. Experimental results are presented for different datasets.

Published in:

Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on

Date of Conference:

1-8 June 2008