By Topic

SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Khan, M.M. ; Sch. of Comput. Sci., Univ. of Manchester, Manchester ; Lester, D.R. ; Plana, L.A. ; Rast, A.
more authors

SpiNNaker is a novel chip - based on the ARM processor - which is designed to support large scale spiking neural networks simulations. In this paper we describe some of the features that permit SpiNNaker chips to be connected together to form scalable massively-parallel systems. Our eventual goal is to be able to simulate neural networks consisting of 109 neurons running in dasiareal timepsila, by which we mean that a similarly sized collection of biological neurons would run at the same speed. In this paper we describe the methods by which neural networks are mapped onto the system, and how features designed into the chip are to be exploited in practice. We will also describe the modelling and verification activities by which we hope to ensure that, when the chip is delivered, it will work as anticipated.

Published in:

Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on

Date of Conference:

1-8 June 2008