By Topic

Self-learning path-tracking control of autonomous vehicles using kernel-based approximate dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xin Xu ; Institute of Automation, College of Mechatronics and Automation, National University of Defense Technology, 410073, Changsha, China ; Hongyu Zhang ; Bin Dai ; Han-gen He

With the fast development of robotics and intelligent vehicles, there has been much research work on modeling and motion control of autonomous vehicles. However, due to model complexity, and unknown disturbances from dynamic environment, the motion control of autonomous vehicles is still a difficult problem. In this paper, a novel self-learning path-tracking control method is proposed for a car-like robotic vehicle, where kernel-based approximate dynamic programming (ADP) is used to optimize the controller performance with little prior knowledge on vehicle dynamics. The kernel-based ADP method is a recently developed reinforcement learning algorithm called kernel least-squares policy iteration (KLSPI), which uses kernel methods with automatic feature selection in policy evaluation to get better generalization performance and learning efficiency. By using KLSPI, the lateral control performance of the robotic vehicle can be optimized in a self-learning and data-driven style. Compared with previous learning control methods, the proposed method has advantages in learning efficiency and automatic feature selection. Simulation results show that the proposed method can obtain an optimized path-tracking control policy only in a few iterations, which will be very practical for real applications.

Published in:

2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)

Date of Conference:

1-8 June 2008