Cart (Loading....) | Create Account
Close category search window
 

Self-learning path-tracking control of autonomous vehicles using kernel-based approximate dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xin Xu ; Coll. of Mechatron. & Autom., Nat. Univ. of Defense Technol., Changsha ; Hongyu Zhang ; Bin Dai ; Han-Gen He

With the fast development of robotics and intelligent vehicles, there has been much research work on modeling and motion control of autonomous vehicles. However, due to model complexity, and unknown disturbances from dynamic environment, the motion control of autonomous vehicles is still a difficult problem. In this paper, a novel self-learning path-tracking control method is proposed for a car-like robotic vehicle, where kernel-based approximate dynamic programming (ADP) is used to optimize the controller performance with little prior knowledge on vehicle dynamics. The kernel-based ADP method is a recently developed reinforcement learning algorithm called kernel least-squares policy iteration (KLSPI), which uses kernel methods with automatic feature selection in policy evaluation to get better generalization performance and learning efficiency. By using KLSPI, the lateral control performance of the robotic vehicle can be optimized in a self-learning and data-driven style. Compared with previous learning control methods, the proposed method has advantages in learning efficiency and automatic feature selection. Simulation results show that the proposed method can obtain an optimized path-tracking control policy only in a few iterations, which will be very practical for real applications.

Published in:

Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on

Date of Conference:

1-8 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.