Cart (Loading....) | Create Account
Close category search window

Class specific gene expression estimation and classification in microarray data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Islam, A. ; Dept. of Electr. & Comput. Eng., Univ. of Memphis, Memphis, TN ; Iftekharuddin, K.M. ; George, E.O.

In this work, we characterize genes using an oligonucleotide affymetrix gene expression dataset and propose a novel gene selection method based on samples from the posterior distributions of class-specific gene expression measures. We construct a hierarchical Bayesian framework for a random effect ANOVA model that allows us to obtain the posterior distributions of the class-specific gene expressions. We also formalize a novel class prediction scheme based on the samples from new posterior distributions of group specific gene expressions. Our experimental results show the class-discriminating power of the selected genes. Furthermore, we demonstrate that our prediction scheme classifies tissue samples into appropriate treatment groups with high accuracy. The computations are implemented by using Gibbs sampling. We compare the efficacy of our proposed gene selection and prediction methods with that of Pomeroy et. al (Nature, 2002) on the same CNS tumor sample dataset.

Published in:

Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on

Date of Conference:

1-8 June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.