By Topic

A new adaptive maneuvering target tracking algorithm using artificial neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhijun Yu ; Shanghai Inst. of Microsyst. & Inf. Technol., Chinese Acad. of Sci., Shanghai ; Jianming Wei ; Haitao Liu

A new neural network (NN) aided adaptive unscented Kalman filter (UKF) is presented for tracking high maneuvering target. In practice, the dynamic systems of many target tracking problems are usually nonlinear and incompletely observed, moreover, there may be large modeling errors when the target is maneuverable or some parameters of the system models are inaccurate or incorrect. The adaptive capability of filters is known to be increased by incorporating a neural network into the filtering procedure. On the other hand, some nonlinear filtering methods such as extended Kalman Filter (EKF) have been used to train a NN with fast convergence speed by augmenting the state with unknown connecting weights. Tackling the natural coalescent between the filtering algorithm and the NN described above, first a more efficient learning algorithm based on unscented Kalman filter (UKF) is derived, which can give a more accurate estimate of the weights and possess faster convergence rate. We then extend the algorithm to form a new NN aided adaptive UKF algorithm and use it in maneuvering target tracking applications. The NN in this algorithm is used to approximate the uncertainty of system models and is trained online, together with the target state estimation. Some simulations are also given to validate that the proposed method can give well state estimation of a highly maneuvering target.

Published in:

Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on

Date of Conference:

1-8 June 2008