By Topic

Texture classification of the ultrasonic images of rotator cuff diseases based on radial basis function network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ming-Huwi Horng ; Department of Information Engineering and Computer Science, National Pingtung Institute of Commerce, Taiwan

This article studies the usages of texture analysis methods to classify ultrasonic rotator cuff images into the different disease groups that are normal, tendon inflammation, calcific tendonitis and tendon tear. The adopted texture analysis methods include the texture feature coding method, gray-level co-occurrence matrix, fractal dimension and texture spectrum. The texture features of the four methods are used to analyze the tissue characteristic of supraspinatus tendon. The mutual information feature selection and F-scoring feature ranking method are independently used to select powerful features from the four texture analysis methods. Furthermore, the trained radial basis function network is used to classify the test images into the ones of four disease group. Experimental results tested on 85 images reveal that the classification accuracy of proposed system can achieves 84%.

Published in:

2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)

Date of Conference:

1-8 June 2008