By Topic

A one-layer recurrent neural network for convex programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qingshan Liu ; Dept. of Mech. & Autom. Eng., Chinese Univ. of Hong Kong, Hong Kong ; Jun Wang

This paper presents a one-layer recurrent neural network for solving convex programming problems subject to linear equality and nonnegativity constraints. The number of neurons in the neural network is equal to that of decision variables in the optimization problem. Compared with the existing neural networks for optimization, the proposed neural network has lower model complexity. Moreover, the proposed neural network is proved to be globally convergent to the optimal solution(s) under some mild conditions. Simulation results show the effectiveness and performance of the proposed neural network.

Published in:

Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on

Date of Conference:

1-8 June 2008