By Topic

An Efficient Direct Approach to Visual SLAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Silveira, G. ; Project Adv. Robot. & Autonomous Syst. (ARobAS), Inst. Nat. de Rech. en Inf. et en Autom. (INRIA), Sophia-Antipolis ; Malis, E. ; Rives, Patrick

The majority of visual simultaneous localization and mapping (SLAM) approaches consider feature correspondences as an input to the joint process of estimating the camera pose and the scene structure. In this paper, we propose a new approach for simultaneously obtaining the correspondences, the camera pose, the scene structure, and the illumination changes, all directly using image intensities as observations. Exploitation of all possible image information leads to more accurate estimates and avoids the inherent difficulties of reliably associating features. We also show here that, in this case, structural constraints can be enforced within the procedure as well (instead of a posteriori), namely the cheirality, the rigidity, and those related to the lighting variations. We formulate the visual SLAM problem as a nonlinear image alignment task. The proposed parameters to perform this task are optimally computed by an efficient second-order approximation method for fast processing and avoidance of irrelevant minima. Furthermore, a new solution to the visual SLAM initialization problem is described whereby no assumptions are made about either the scene or the camera motion. Experimental results are provided for a variety of scenes, including urban and outdoor ones, under general camera motion and different types of perturbations.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 5 )