By Topic

Machine Vision/GPS Integration Using EKF for the UAV Aerial Refueling Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Marco Mammarella ; Dept. of Mech. & Aerosp. Eng., West Virginia Univ., Morgantown, WV ; Giampiero Campa ; Marcello R. Napolitano ; Mario L. Fravolini
more authors

The purpose of this paper is to propose the application of an extended Kalman filter (EKF) for the sensors fusion task within the problem of aerial refueling for unmanned aerial vehicles (UAVs). Specifically, the EKF is used to combine the position data from a global positioning system (GPS) and a machine vision (MV)-based system for providing a reliable estimation of the tanker-UAV relative position throughout the docking and the refueling phase. The performance of the scheme has been evaluated using a virtual environment specifically developed for the study of the UAV aerial refueling problem. Particularly, the EKF-based sensor fusion scheme integrates GPS data with MV-based estimates of the tanker-UAV position derived through a combination of feature extraction, feature classification, and pose estimation algorithms. The achieved results indicate that the accuracy of the relative position using GPS or MV estimates can be improved by at least one order of magnitude with the use of EKF in lieu of other sensor fusion techniques.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:38 ,  Issue: 6 )