By Topic

Broadcast Court-Net Sports Video Analysis Using Fast 3-D Camera Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Han, J. ; Eindhoven Univ. of Technol., Eindhoven ; Farin, D. ; de With, P.H.N.

This paper addresses the automatic analysis of court-net sports video content. We extract information about the players, the playing-field in a bottom-up way until we reach scene-level semantic concepts. Each part of our framework is general, so that the system is applicable to several kinds of sports. A central point in our framework is a camera calibration module that relates the a-priori information of the geometric layout in the form of a court model to the input image. Exploiting this information, several novel algorithms are proposed, including playing-frame detection, players segmentation and tracking. To address the player-occlusion problem, we model the contour map of the player silhouettes using a nonlinear regression algorithm, which enables to locate the players during the occlusions caused by players in the same team. Additionally, a Bayesian-based classifier helps to recognize predefined key events, where the input is a number of real-world visual features. We illustrate the performance and efficiency of the proposed system by evaluating it for a variety of sports videos containing badminton, tennis and volleyball, and we show that our algorithm can operate with more than 91% feature detection accuracy and 90% event detection.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:18 ,  Issue: 11 )