By Topic

Nonlinear Dimensionality Reduction with Local Spline Embedding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shiming Xiang ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Feiping Nie ; Changshui Zhang ; Chunxia Zhang

This paper presents a new algorithm for nonlinear dimensionality reduction (NLDR). Our algorithm is developed under the conceptual framework of compatible mapping. Each such mapping is a compound of a tangent space projection and a group of splines. Tangent space projection is estimated at each data point on the manifold, through which the data point itself and its neighbors are represented in tangent space with local coordinates. Splines are then constructed to guarantee that each of the local coordinates can be mapped to its own single global coordinate with respect to the underlying manifold. Thus, the compatibility between local alignments is ensured. In such a work setting, we develop an optimization framework based on reconstruction error analysis, which can yield a global optimum. The proposed algorithm is also extended to embed out of samples via spline interpolation. Experiments on toy data sets and real-world data sets illustrate the validity of our method.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 9 )