Cart (Loading....) | Create Account
Close category search window
 

Information-Theoretic Distance Measures for Clustering Validation: Generalization and Normalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper studies the generalization and normalization issues of information-theoretic distance measures for clustering validation. Along this line, we first introduce a uniform representation of distance measures, defined as quasi-distance, which is induced based on a general form of conditional entropy. The quasi-distance possesses three properties: symmetry, the triangle law, and the minimum reachable. These properties ensure that the quasi-distance naturally lends itself as the external measure for clustering validation. In addition, we observe that the ranges of the distance measures are different when they apply for clustering validation on different data sets. Therefore, when comparing the performances of clustering algorithms on different data sets, distance normalization is required to equalize ranges of the distance measures. A critical challenge for distance normalization is to obtain the ranges of a distance measure when a data set is provided. To that end, we theoretically analyze the computation of the maximum value of a distance measure for a data set. Finally, we compare the performances of the partition clustering algorithm K-means on various real-world data sets. The experiments show that the normalized distance measures have better performance than the original distance measures when comparing clusterings of different data sets. Also, the normalized Shannon distance has the best performance among four distance measures under study.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.