By Topic

Limitations of Existing Mutation Rate Heuristics and How a Rank GA Overcomes Them

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cervantes, J. ; Inst. de Investig. en Mat. Aplic. y en Sist., UNAM Circuito Exterior, Mexico City ; Stephens, C.R.

Using a set of different search metrics and a set of model landscapes we theoretically and empirically study how ldquooptimalrdquo mutation rates for the simple genetic algorithm (SGA) depend not only on the fitness landscape, but also on population size and population state. We discuss the limitations of current mutation rate heuristics, showing that any fixed mutation rate can be expected to be suboptimal in terms of balancing exploration and exploitation. We then develop a mutation rate heuristic that offers a better balance by assigning different mutation rates to different subpopulations. When the mutation rate is assigned through a ranking of the population, according to fitness for example, we call the resulting algorithm a Rank GA. We show how this Rank GA overcomes the limitations of other heuristics on a set of model problems showing under what circumstances it might be expected to outperform a SGA with any choice of mutation rate.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:13 ,  Issue: 2 )