By Topic

A novel liquid antenna for wearable bio-monitoring applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Anya Traille ; GEDC/ECE, Georgia Tech, Atlanta, 30332-250, USA ; Li Yang ; Amin Rida ; Manos M. Tentzeris

The performance of the most commonly used metal antennas close to the human body is one of the limiting factors of the performance of bio-sensors and wireless body area networks (WBAN). Due to the high dielectric and conductivity contrast with respect to most parts of the human body (blood, skin, ...), the range of most of the wireless sensors operating in RF and microwave frequencies is limited to 1-2 cm when attached to the body. In this paper, we introduce the very novel idea of liquid antennas, that is based on engineering the properties of liquids. This approach allows for the improvement of the range by a factor of 5-10 in a very easy-to-realize way, just modifying the salinity of the aqueous solution of the antenna. A similar methodology can be extended to the development of liquid RF electronics for implantable devices and wearable real-time bio-signal monitoring, since it can potentially lead to very flexible antenna and electronic configurations.

Published in:

Microwave Symposium Digest, 2008 IEEE MTT-S International

Date of Conference:

15-20 June 2008