By Topic

Online drift correction in wireless sensor networks using spatio-temporal modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Maen Takruri ; Centre for Real-Time Information Networks (CRIN), University of Technology, Sydney, Australia ; Sutharshan Rajasegarar ; Subhash Challa ; Christopher Leckie
more authors

Wireless sensor networks are deployed for the purpose of sensing and monitoring an area of interest. Sensors in the sensor network can suffer from both random and systematic bias problems. Even when the sensors are properly calibrated at the time of their deployment, they develop drift in their readings leading to erroneous inferences being made by the network. The drift in this context is defined as a slow, unidirectional, long-term change in the sensor measurements. In this paper we present a novel algorithm for detecting and correcting sensors drifts by utilising the spatio-temporal correlation between neigbouring sensors. Based on the assumption that neighbouring sensors have correlated measurements and that the instantiation of drift in a sensor is uncorrelated with other sensors, each sensor runs a support vector regression algorithm on its neigbourspsila corrected readings to obtain a predicted value for its measurements. It then uses this predicted data to self-assess its measurement and detect and correct its drift using a Kalman filter. The algorithm is run recursively and is totally decentralized. We demonstrate using real data obtained from the Intel Berkeley Laboratory that our algorithm successfully suppresses drifts developed in sensors and thereby prolongs the effective lifetime of the network.

Published in:

Information Fusion, 2008 11th International Conference on

Date of Conference:

June 30 2008-July 3 2008