By Topic

On an Optical Inertial Navigation System—Part II

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Iyer, R. ; Dept. of Math. & Stat., Texas Tech Univ., Lubbock, TX ; Toda, M. ; Holsapple, R.

In part I, we developed the optical transfer function of the lens-fiber system for quasi-monochromatic, incoherent excitation, and studied the properties of the kernel function. We also studied the cross-talk between the fibers of the lens-fiber system for a worker bee and an artificial eye, and showed that it is not significant. This allows us in this paper, to consider a mathematical idealization of a corneal surface as a continuum of lens-fiber systems. We consider this surface to be a regular immersion of class rges 2 that is the image in R3 of a simply connected, open set in R2. We study the change in the power propagated in the fiber due to virtual motions of the corneal surface and show that for motion along the axis, the power propagated is invariant. Finally, we show that the ego-motion estimation problem is well-posed for sufficiently rich quasi-monochromatic, incoherent excitation on an allowable, regular corneal surface, and further show that the solution does not depend on the parameterization of the surfaces or the parameters of the aircraft (such as mass and inertia matrix) on which the ONS is mounted.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 8 )