Cart (Loading....) | Create Account
Close category search window
 

Artificial Whiskers Suitable for Array Implementation: Accounting for Lateral Slip and Surface Friction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Solomon, J.H. ; Dept. of Biomed. Eng., Northwestern Univ., Evanston, IL ; Hartmann, M.J.Z.

The exquisite tactile sensing ability of biological whiskers has recently led to increasing interest in constructing robotic versions with similar capabilities. Tactile extraction of three-dimensional (3-D) object shape poses several unique challenges that have only begun to be addressed. The present study develops a method for estimating the contact location of a robotic whisker rotating against an object based on small changes in moment at the whisker base. Importantly, the method accounts for lateral slip as well as surface friction, making it particularly well suited for implementation on an array of robotic whiskers. Array implementation would permit simultaneous extraction of multiple contact points and enable highly parallel, efficient 3-D object feature extraction. A simple, scalable array design is suggested to fulfill this approach.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 5 )

Date of Publication:

Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.