By Topic

An ICA Mixture Hidden Markov Model for Video Content Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian Zhou ; Dept. of Electr. & Comput. Eng., Ryerson Univ., Toronto, ON ; Xiao-Ping Zhang

In this paper, a new theoretical framework based on hidden Markov model (HMM) and independent component analysis (ICA) mixture model is presented for content analysis of video, namely ICAMHMM. Unlike the Gaussian mixture observation model commonly used in conventional HMM applications, the observations in the new ICAMHMM are modeled as a mixture of non-Gaussian components. Each non-Gaussian component is formulated by an ICA mixture, reflecting the independence of different components across video frames. In addition, to construct a compact feature space to represent a video frame, ICA is applied on video frames and the ICA coefficients are used to form a compact 2-D feature subspace that makes the subsequent modeling computationally efficient. The model parameters can be identified using supervised learning by the training sequences. The new re-estimation learning formulae of iterative ICAMHMM parameter estimation are derived based on a maximum likelihood function. Employing the identified model, maximum likelihood algorithms are developed to detect and recognize video events. As a case study, golf video sequences are used to test the effectiveness of the proposed algorithm. Experimental results show that the presented method can effectively detect and recognize the recurrent event patterns in video data. The presented new ICAMHMM is generic and can be applied to sequential data analysis in other applications.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:18 ,  Issue: 11 )