Cart (Loading....) | Create Account
Close category search window
 

Ultimate Accuracy for the nand Flash Program Algorithm Due to the Electron Injection Statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Monzio Compagnoni, C. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milan ; Spinelli, A.S. ; Gusmeroli, R. ; Beltrami, S.
more authors

This paper investigates the ultimate accuracy of the NAND flash program algorithm that is determined by the statistical injection of electrons from the substrate to the floating gate. The granular nature of the electron flow during a constant-current Fowler-Nordheim program operation is shown to spread the programmed threshold-voltage distribution of the array cells. The electron injection statistics displays a Poissonian behavior for low amounts of transferred charge, but a sub-Poissonian character becomes clearly evident when large charge packets are stored. This effect is expected from the reduction of the tunnel oxide field that follows each electron storage event into the floating gate, establishing a correlation among such events. Finally, the impact of the electron injection statistical spread on the accuracy of the NAND flash program algorithm is investigated as a function of the technology node feature size, drawing projections on future NAND technologies.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 10 )

Date of Publication:

Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.