By Topic

Fusing genetic algorithm and Ant Colony Algorithm to optimize virtual enterprise partner selection problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yao, Z. ; Sch. of Econ. & Manage., BeiHang Univ., Beijing ; Liu, J. ; Wang, Y.-G.

The partner selection in virtual enterprises organization is one of the key issues corporate enterprises experience nowadays. Based on the model of Ant Colony Optimization Algorithm (ACA) in virtual enterprise partner selection, in this paper, we fuse the genetic algorithm into ACA, called fusion algorithm, in order to improve the effect of the partner selection. The fusion algorithm has two steps: 1) it uses the GA to optimize the model of partner selection and takes advantages of rapid convergence of GA in initial search periods. 2) When GA search speed has become slow, the ACA takes over the search process, in which it uses the candidates produced by the GA as the seeds of pheromone used by ACA. By experimental comparison with GA optimization and ACA optimization, it shows that the fusion algorithm has performed better than the GA and ACA optimization, respectively, in both speed and accuracy under our selected numerical case. The fusion algorithm presented in this study may be applicable to similar business problems.

Published in:

Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on

Date of Conference:

1-6 June 2008