By Topic

Evolutionary approach to quantum symbolic logic synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Martin Lukac ; Department of Electrical and Computer Engineering, Portland State University, OR, USA ; Marek Perkowski

In this paper we present an evolutionary approach to the quantum symbolic logic synthesis. We use a genetic algorithm to synthesize quantum circuits from examples, allowing to synthesize functions that are both completely and incompletely specified. The symbolic synthesis is implemented in the GA so as to verify our approach. The Occam Razor principle, fundamental to inductive learning as well as to logic synthesis, is satisfied in this approach by seeking circuits of reduced complexity. The GA is tested on a set of benchmark functions representing single output quantum circuits as well as multiple entangled-qubit state generators.

Published in:

2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)

Date of Conference:

1-6 June 2008