By Topic

Inferring S-system models of genetic networks from a time-series real data set of gene expression profiles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hui-Ling Huang ; Dept. of Inf. Manage., Jin Wen Inst. of Technol., Taipei ; Kuan-Wei Chen ; Shinn-Jang Ho ; Shinn-Ying Ho

It is desirable to infer cellular dynamic regulation networks from gene expression profiles to discover more delicate and substantial functions in molecular biology, biochemistry, bioengineering, and pharmaceutics. The S-system model is suitable to characterize biochemical network systems and capable of analyzing the regulatory system dynamics. To cope with the problem ldquomultiplicity of solutionsrdquo, a sufficient amount of data sets of time-series gene expression profiles were often used. An efficient newly-developed method iTEA was proposed to effectively obtain S-system models from a large number (e.g., 15) of simulated data sets with/without noise. In this study, we propose an extended optimization method (named iTEAP) based on iTEA to infer the S-system models of genetic networks from a time-series real data set of gene expression profiles (using SOS DNA microarray data in E. coli as an example). The algorithm iTEAP generated additionally multiple data sets of gene expression profiles by perturbing the given data set. The results reveal that 1) iTEAP can obtain S-system models with high-quality profiles to best fit the observed profiles; 2) the performance of using multiple data sets is better than that of using a single data set in terms of solution quality, and 3) the effectiveness of iTEAP using a single data set is close to that of iTEA using two real data sets.

Published in:

Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on

Date of Conference:

1-6 June 2008