By Topic

Online adaptive controller for simulated car racing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
C. H. Tan ; Department of Electrical & Computer Engineering, National University of Singapore, 4, Engineering Drive, Singapore 117576 ; J. H. Ang ; K. C. Tan ; A. Tay

An adaptive game AI has the potential of tailoring a uniquely entertaining and meaningful game experience to a specific player. An online adaptive AI should be able to profile its opponent efficiently during the early phase of the game and adapts its own playing style to the level of the player so that the player feels entertained playing against it. This paper presents an online adaptive algorithm that uses ideas from evolutionary computation to match the skill level of the opponent during the game. The proposed algorithms demonstrated using a car racing simulator is capable of matching its opponents in terms of both mean score and winning percentages.

Published in:

2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)

Date of Conference:

1-6 June 2008