By Topic

Robust model matching control of immune systems under environmental disturbances: Fuzzy dynamic game approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chia-Hung Chang ; Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China ; Bor-Sen Chen ; Yung-Jen Chuang

A robust model matching control of immune response is proposed for therapeutic enhancement to match a prescribed immune response under uncertain initial states and environmental disturbances, including continuous intrusion of exogenous pathogens. The worst-case effect of all possible environmental disturbances and uncertain initial states on the matching for a desired immune response is minimized for the enhanced immune system, i.e. a robust control is designed to track a prescribed immune model response from the minimax matching perspective. This minimax matching problem could be transformed to an equivalent dynamic game problem. The exogenous pathogen and environmental disturbances are considered as a player to maximize (worsen) the matching error when the therapeutic control agents are considered as another player to minimize the matching error. Since the innate immune system is highly nonlinear, it is not easy to solve the robust model matching control problem by the nonlinear dynamic game method directly. A fuzzy model is proposed to interpolate several linearized immune systems at different operation points to approximate the innate immune system via smooth fuzzy membership functions. With the help of fuzzy approximation method, the minimax matching control problem of immune systems could be easily solved by the proposed fuzzy dynamic game method via the linear matrix inequality (LMI) technique with the help of robust control toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed method.

Published in:

2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)

Date of Conference:

1-6 June 2008