Cart (Loading....) | Create Account
Close category search window
 

Study of tumor molecular diagnosis model based on artificial neural network with gene expression profile

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaogang Ruan ; Coll. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., Beijing ; Jinlian Wang ; Hui Li ; Xiaoming Li

We introduce a method for modeling cancer diagnosis at the molecular level using a Chinese microarray gastric cancer dataset. The method combines an artificial neural network with a decision tree that is intended to precede standard techniques, such as classification, and enhance their performance and ability to detect cancer genes. First, we used the relief algorithm to select the featured genes that could unravel cancer characteristics out of high dimensional data. Then, an artificial neural network was employed to find the biomarker subsets with the best classification performance for distinguishing cancerous tissues and their counterparts. Next a decision tree expression was used to extract rules subsets from these biomarker sets. Rules induced from the best performance decision tree, in which the branches denote the level of gene expression, were interpreted as a diagnostic model by using previous biological knowledge. Finally, we obtained a gastric cancer diagnosis model for Chinese patients. The results show that using the Chinese gastric biomarker genes with the diagnostic model provides more instruction in biological experiments and clinical diagnosis reference than previous methods.

Published in:

Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on

Date of Conference:

1-6 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.