By Topic

Gene expression analyses using Genetic Algorithm based hybrid approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dingiun Chen ; Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong ; Chan, K.C.C. ; Xindong Wu

This paper presents two genetic algorithm (GA) based hybrid approaches for the prediction of tumor outcomes based on gene expression data. One approach is the hybrid GA and K-medoids for grouping genes based on the commonly used distance similarity. The goal of grouping genes here is to choose some top-ranked representatives from each cluster for gene dimensionality reduction. The second proposed approach is the hybrid GA and Support Vector Machines (SVM) for selecting marker genes and classifying tumor types or predicting treatment outcomes. These two hybrid approaches have been applied to public brain cancer datasets, and the experimental results are compared with those given in a 2001 paper published in the Nature. The final prediction accuracies are found to be superior both for tumor class prediction and treatment outcome prediction.

Published in:

Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on

Date of Conference:

1-6 June 2008