By Topic

Task scheduling by Mean Field Annealing algorithm in grid computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Guixiang Xue ; Sch. of Comput. Sci. & Technol., Tianjin Univ., Tianjin ; Zheng Zhao ; Maode Ma ; Tonghua Su
more authors

Desirable goals for grid task scheduling algorithms would shorten average delay, maximize system utilization and fulfill user constraints. In this work, an agent-based grid management infrastructure coupled with mean field annealing (MFA) scheduling algorithm has been proposed. An agent in grid utilizes a neural network algorithm to manage and schedule tasks. The Hopfield neural network is good at finding optimal solution with multi-constraints and can be fast to converge to the result. However, it is often trapped in a local minimum. Stochastic simulated annealing algorithm has an advantage in finding the optimal solution and escaping from the local minimum. Both significant characteristics of Hopfield neural network structure and stochastic simulated annealing algorithm are combined together to yield a mean field annealing scheme. A modified cooling procedure to accelerate reaching equilibrium for normalized mean field annealing has been applied to this scheme. The simulation results show that the scheduling algorithm of MFA works effectively.

Published in:

Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on

Date of Conference:

1-6 June 2008