By Topic

Divide and conquer evolutionary TSP solution for vehicle path planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meuth, R. ; Appl. Comput. Intell. Lab., Missouri Univ. of Sci. & Technol., Rolla, MO ; Wunsch, D.C.

The problem of robotic area coverage is applicable to many domains, such as search, agriculture, cleaning, and machine tooling. The robotic area coverage task is concerned with moving a vehicle with an effector, or sensor, through the task space such that the sensor passes over every point in the space. For covering complex areas, back and forth paths are inadequate. This paper presents a real-time path planning architecture consisting of layers of a clustering method to divide and conquer the problem combined with a two layered, global and local optimization method. This architecture is able to optimize the execution of a series of waypoints for a restricted mobility vehicle, a fixed wing airplane.

Published in:

Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on

Date of Conference:

1-6 June 2008