By Topic

Dynamic diversity control by injecting artificial chromosomes for solving TSP problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pei-Chann Chang ; Department of Information Management, Yuan Ze University, Taoyuan 32026, Taiwan, R.O.C. ; Wei-Hsiu Huang ; Julie Yu-Chih Liu ; Cycer Chen
more authors

The applications of genetic algorithms (GAs) in solving combinatorial problems are frequently faced with a problem of early convergence and the evolutionary processes are often trapped in a local but not global optimum. This premature convergence occurs when the population of a genetic algorithm reaches a suboptimal state that the genetic operators can no longer produce offspring with a better performance than their parents. In the literature, plenty of work has been investigated to introduce new methods and operators in order to overcome this essential problem of genetic algorithms. As these methods and the belonging operators are rather problem specific in general. In this research, we take a different approach by observing the progress of the evolutionary process and when the diversity of the population dropping below a threshold level then artificial chromosomes with high diversity will be introduced to increase the average diversity level thus to ensure the process can jump out the local optimum. The proposed method is implemented independently of the problem characteristics and can be applied to improve the global convergence behavior of genetic algorithms. The experimental results using TSP instances show that the proposed approach is very effective in preventing the premature convergence when compared with the earlier approaches.

Published in:

2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)

Date of Conference:

1-6 June 2008