By Topic

Distributed adaptive search method for Genetic Algorithm controlled by fuzzy reasoning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qiang Li ; Dept. of Syst. Design Eng., Univ. of Fukui, Fukui ; Maeda, Y.

In this paper, we proposed FASPGA based on diversity measure (DM-FASPGA) and FASPGA based on evolution history (EH-FASPGA) as the improvement method of fuzzy adaptive search method for parallel genetic algorithm (FASPGA). In DM-FASPGA, genetic parameters is tuning by fuzzy rule based on diversity of sub-population. Many kinds of diversity measure parameters are imported into the fuzzy rule. And in EH-FASPGA, we imported the evolution history information for improving the accuracy to estimate the evolution degree. Simulation results are also further presented to show the effectiveness and performance of method we proposed in this paper.

Published in:

Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on

Date of Conference:

1-6 June 2008