By Topic

Data-driven Nonlinear Hebbian Learning method for Fuzzy Cognitive Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stach, W. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB ; Kurgan, L. ; Pedrycz, W.

Fuzzy cognitive maps (FCMs) are a convenient tool for modeling of dynamic systems by means of concepts connected by cause-effect relationships. The FCM models can be developed either manually (by the experts) or using an automated learning method (from data). Some of the methods from the latter group, including recently proposed Nonlinear Hebbian Learning (NHL) algorithm, use Hebbian law and a set of conditions imposed on output concepts. In this paper, we propose a novel approach named data-driven NHL (DD-NHL) that extends NHL method by using historical data of the input concepts to provide improved quality of the learned FCMs. DD-NHL is tested on both synthetic and real-life data, and the experiments show that if historical data are available, then the proposed method produces better FCM models when compared with those formed by the generic NHL method.

Published in:

Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on

Date of Conference:

1-6 June 2008