By Topic

A noise-tolerant approach to fuzzy-rough feature selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chris Cornelis ; Department of Applied Mathematics and Computer Science, Ghent University, Gent, Belgium ; Richard Jensen

In rough set based feature selection, the goal is to omit attributes (features) from decision systems such that objects in different decision classes can still be discerned. A popular way to evaluate attribute subsets with respect to this criterion is based on the notion of dependency degree. In the standard approach, attributes are expected to be qualitative; in the presence of quantitative attributes, the methodology can be generalized using fuzzy rough sets, to handle gradual (in) discernibility between attribute values more naturally. However, both the extended approach, as well as its crisp counterpart, exhibit a strong sensitivity to noise: a change in a single object may significantly influence the outcome of the reduction procedure. Therefore, in this paper, we consider a more flexible methodology based on the recently introduced vaguely quantified rough set (VQRS) model. The method can handle both crisp (discrete-valued) and fuzzy (real-valued) data, and encapsulates the existing noise-tolerant data reduction approach using variable precision rough sets (VPRS), as well as the traditional rough set model, as special cases.

Published in:

Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on

Date of Conference:

1-6 June 2008