By Topic

Fuzzy inference based autoregressors for time series prediction using nonparametric residual variance estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Federico Montesino Pouzols ; Microelectronics Institute of Seville, CSIC, Scientific Research Council, Avda. Reina Mercedes s/n. Edif. CICA. E-41012, Spain ; Amaury Lendasse ; Angel Barriga

We apply fuzzy techniques for system identification and supervised learning in order to develop fuzzy inference based autoregressors for time series prediction. An automatic methodology framework that combines fuzzy techniques and statistical techniques for nonparametric residual variance estimation is proposed. Identification is performed through the learn from examples method introduced by Wang and Mendel, while the Marquard-Levenberg supervised learning algorithm is then applied for tuning. Delta test residual noise estimation is used in order to select the best subset of inputs as well as the number of linguistic labels for the inputs. Experimental results for three time series prediction benchmarks are compared against LS-SVM based autoregressors and show the advantages of the proposed methodology in terms of approximation accuracy, generalization capability and linguistic interpretability.

Published in:

Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on

Date of Conference:

1-6 June 2008