Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng-Hung Chen ; Dept. of Electr. & Control Eng., Nat. Chiao-Tong Univ., Hsinchu ; Yong-Cheng Liu ; Cheng-Jian Lin ; Chin-Teng Lin

This study presents an evolutionary neural fuzzy network, designed using the functional-link-based neural fuzzy network (FLNFN) and a new evolutionary learning algorithm. This new evolutionary learning algorithm is based on a hybrid of cooperative particle swarm optimization and cultural algorithm. It is thus called cultural cooperative particle swarm optimization (CCPSO). The proposed CCPSO method, which uses cooperative behavior among multiple swarms, can increase the global search capacity using the belief space. Cooperative behavior involves a collection of multiple swarms that interact by exchanging information to solve a problem. The belief space is the information repository in which the individuals can store their experiences such that other individuals can learn from them indirectly. The proposed FLNFN model uses functional link neural networks as the consequent part of the fuzzy rules. Finally, the proposed functional-link-based neural fuzzy network with cultural cooperative particle swarm optimization (FLNFN-CCPSO) is adopted in several predictive applications. Experimental results have demonstrated that the proposed CCPSO method performs well in predicting the time series problems.

Published in:

Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on

Date of Conference:

1-6 June 2008