By Topic

Reliability of flat XOR-based erasure codes on heterogeneous devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kevin M. Greenan ; Hewlett-Packard Labs, USA ; Ethan L. Miller ; Jay J. Wylie

XOR-based erasure codes are a computationally-efficient means of generating redundancy in storage systems. Some such erasure codes provide irregular fault tolerance: some subsets of failed storage devices of a given size lead to data loss, whereas other subsets of failed storage devices of the same size are tolerated. Many storage systems are composed of heterogeneous devices that exhibit different failure and recovery rates, in which different placements- mappings of erasure-coded symbols to storage devices-of a flat XOR-based erasure code lead to different reliabilities. We have developed redundancy placement algorithms that utilize the structure of flat XOR-based erasure codes and a simple analytic model to determine placements that maximize reliability. Simulation studies validate the utility of the simple analytic reliability model and the efficacy of the redundancy placement algorithms.

Published in:

2008 IEEE International Conference on Dependable Systems and Networks With FTCS and DCC (DSN)

Date of Conference:

24-27 June 2008